Meckel Gruber Syndrome- A Case Report And Review of Literature

Sümeyra NERGİZ1, Selda DEMİRCAN SEZER1, Sündüz Özlem ALTINKAYA1, Mert KUÇÜK1, Hasan YÜKSEL1

Aydın, Turkey

Meckel-Gruber syndrome (MGS) is a lethal autosomal recessive disorder. MGS is thought to be caused by ciliary dysfunction. The worldwide incidence of MGS varies from 1 in 13 250 to 1 in 140.000 live births. MGS is characterized by three main symptoms: central nervous system (CNS) malformations, tetramelic postaxial polydactyly and cystic renal dysplasia with associated fibrocystic changes of the liver, pancreas and epididymis. Here a case of MG syndrome, diagnosed in early weeks of gestation was reported.

Keywords: Meckel gruber syndrome, Ultrasonography, Prenatal diagnosis

Gynecol Obstet Reprod Med 2014;20:175-177

Introduction

Meckel-Gruber syndrome (MGS) was first described in 1822 by Meckel1 and thereafter in 1934 by Gruber.2 It is a lethal autosomal recessive disorder characterized by anomalies of the central nervous system (CNS) resulting in mental retardation, cystic dysplasia of the kidneys, and malformations of the hands and feet.3,4 Although numerous abnormalities associated with MGS were previously reported in the literature, Dandy-Walker malformation 5-7 occipital encephalocele, holoprosencephaly, agenesis of the corpus callosum, hydrocephalus,8 microcephaly, intrauterine growth retardation (IUGR), single umbilical artery, cardiovascular defects, cleft palate,9,10 several genital abnormalities,6,9,10 and oligohydramnios5,10 are the most well known. Hepatic periportal fibrosis [7] were also noted in some cases. The worldwide incidence of MGS varies from 1 in 13 250 to 1 in 140.000 live births.11 The condition has a reported incidence of 1:9000 births in Finland;12 in the UK, it is estimated to be 1:140.000.13 Here a case of MGS, diagnosed in early weeks of gestation was reported.

Case Report

A 32-year-old woman, G4 P1 A2, was referred to Adnan Menderes University, Faculty of Medicine, Obstetrics and Gynecology Department at 15 weeks of gestation for the diagnosis of bilateral polycystic kidneys. She had no consan-
Postmortem external examination revealed a male fetus with a weight of 118 g. Head circumference was 12 cm, abdominal circumference was 14 cm. The fetus had encephalocele and polydactyly in both hands and feet (Figure 2). On cross-section, the cut surfaces of kidneys were both cystic in appearance like a sponge kidney. Bladder was not observed in fetus. Also fetal lungs were observed as consisting of two lobes.

Discussion

MGS is characterized by cystic kidneys, occipital encephalocele and postaxial polydactyly. Two of the three major anomalies are sufficient for the definitive diagnosis. Cystic renal dysplasia, occipital encephalocele, and postaxial polydactyly were found in 100%, 90%, and 83.3% of the fetuses, respectively.14 It was reported that 57% of the cases had three cardinal findings, but 16% had only polycystic kidney and polydactyly.15 In present case, encephalocele, postaxial polydactyly and bilateral cystic renal dysplasia were observed. When considering the differential diagnosis, mild forms of MGS may be confused with severe forms of Smith-Lemli-Opitz syndrome (microcephaly, mental retardation, cardio-pulmonary-renal malformations, and polydactyly), Bardet-Biedl syndrome (BBS; vision loss, mental retardation, renal disease, polydactyly and obesity),16 Joubert syndrome (JS; vermis hypoplasia/dysplasia, facial abnormalities, cystic renal disease, polydactyly and cleft palate), Trisomy 18 (choroid plexus cysts, congenital heart and kidney disease, clenched hands and rocker-bottom feet)17 and trisomy 13 (holoprosencephaly, cleft lip/palate, congenital heart disease and polydactyly).11

MGS is a lethal syndrome, generally resulting in utero or neonatal death within a few hours of life; thus, earlier prenatal diagnosis is very important. The condition can be diagnosed sonographically in the first and second trimester.18 Earlier diagnosed cases were reported at 12+2 weeks’ gestation by transabdominal ultrasound,19 at 10 weeks by embryoscopy 20 and at 11 weeks of menstrual age, again by embryosfetoscopy.21 Of course these are invasive techniques for diagnosis. In present case, prenatal diagnosis by a detailed ultrasonography was performed.

MGS is an autosomal recessive disorder. Once diagnosed in reproductive couples, their chances of subsequently giving birth to or of being diagnosed as carrying a child with MGS are 1 in 4 (25% chance) for each pregnancy. When MGS is suspected, a karyotype study should be obtained to exclude chromosomal disorder (trisomy 13).11 Because the patient denied, karyotyping could not be performed in this case. If the diagnosis can be made before viability, termination can be offered as in present case. But important issue about this recurring fetal malformation is prenatal genetic counseling of couples. Many researches have been continuing but genetic mapping of the syndrome is still incomplete and several loci (MKS1, MKS3, MKS6 MKS4 (CEP290))22 are most frequent responsible genes) have been proposed, which may, in part, explain the observed phenotypic variability.23,24 There have been many investigations about a molecular diagnostic screening by polymerase chain reaction (PCR) for especially MKS1 and MKS3 gene mutations to diagnose MGS.25,17

In literature, it is claimed that detection of MGS is already possible in the first trimester. Knowledge of the underlying genetic defect helps counseling the couples with recurrence of MGS and chorionic villi sampling in the first trimester of pregnancy can be offered.21 Of course, actually, aim of investigations is preimplantation genetic diagnosis (PGD) of MGS which seems to be most reliable option for these families having recurrent gestations with this lethal disease, in future. However, due to the heterogeneous genetic basis, nowadays prenatal ultrasonographic signs still play a key role in the clinical diagnosis of MGS. The role of genetic testing, however, might change in the near future with the development and improvement of sequencing facilities.

